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CHAPTER 1

INTRODUCTION

The problem of electromagnetic coupling from one

region to another region through an aperture in a

conducting plane can be formulated in terms of two

admittance operators, one for each region [11. These

admittance operators are complex and symmetric. Recently,

a theory for the characteristic modes for apertures has

0 been proposed [23. The characteristic currents are

defined as the eigenfunctions of a certain generalized

eigenvalue equation involving the admittance operators and

their real parts. Because of the particular choice of the

eigenvalue equation, the characteristic currents are real

(or equiphase) and orthogonal with respect to the

admittance operator, its real part, and its imaginary part

over the aperture. Furthermore, the characteristic fields

produced by the characteristic currents are orthogonal

over the radiation sphere. For small apertures, the

characteristic mode theory reduces to an augmented Bethe

hole theory, i.e., the aperture is described by a

susceptance term related to the polarizability, plus a

conductance term.

* Of aperture problems, the problem of an infinitely

long slot in a conducting plane (see Figure 1-1) has been

S Ilo 1 " I
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Figure 1-1. An infinitely long slot in a

* conducting plane.
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considered most over the years since it was first

addressed by Lord Rayleigh [3]. In his solution, Lord

Rayleigh relied on reducing the problem to known

solutions of hydrodynamic or electrostatic problems, but

treated only the special case of a sufficiently narrow

slot (a slit) E4, Page 273). The narrow slot has since

continued to receive particular attention. Morse and

Rubenstein [5] provided an exact solution for the slit.

Their analysis was based on solving the Helmholtz equation

* in elliptic coordinates using separation of variables,

and, as a result, involved series of Mathieu functions.

Later, Barakat [63 generalized their work to a slot in a

conducting plane separating mediums with different

electromagnetic properties. Sommerfeld [4, Section 393

reduced the associated boundary value problem into an

integral equation for the electric field in the slot for

uniform transverse electric and magnetic plane waves

normally incident on the slot. Although the formulation

is general and valid for wide slots of arbitrary width,

the solution was given only under narrow slot

approximations. Millar £7), extending Sommerfeld's
S

equations to obliquely incident plane waves, solved for

the electric field in the slot in the form of a power

series in the ratio of slot width to wavelength. Houlberg

[63 then generalized the work of Millar to the two-medium
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problem. Variational techniques (9, Section 7-121 also

found their application to the solution of narrow slots.

More recently, Butler and Wilton E1OJ used a. series

expansion of Chebyshev polynomials to obtain exact

solutions f or the equivalent magnetic current on the

narrow slot for a general excitation.

Effective solutions for wide slots of width

comparable to the wavelength, however, have only become

possible with the advance of solution techniques based on

the method of moments [111. Typically, an operator,

usually integral, equation is derived f or some unknown

parameter from which all other quantities can be derived.

As in narrow slot solutions, the unknown parameter is

approximated by' a linear combination of some k~nown

functions, but, in contrast to narrow slot solutions, the

kernel of the integral equation is not replaced by its

small argument approximation. The inner products of the

integral equation with testing functions form a matrix

equation whose solution determines the unknown

coefficients. Butler and Umashankar (12) utilized the

*generalized admittance formulation to solve the

two-medium problem. Chou and Adams [13) treated

single and double slots in an unbounded medium by

* converting the slot problem to that of a strip using

Babinet's principle (9, Section 7-123. Other varieties of



slot problems were also considered. Lewis [14) studied

the effect of covering the slot by a dielectric sheath,

while Nevels and Butler E15) solved the problem of a slot

in a ground screen covered by a dielectric slab.

Electromagnetic transmission through a filled slot in a

thick conducting plane was investigated by Auckland and

Harrington [16], [171.

In this report, the theory of characteristic modes

for apertures is specialized to an infinitely long slot in

a conducting plane in an unbounded medium. The theory is

then applied to a complete solution of the slot problem

when the slot is illuminated by

1- a uniform transverse electic (to the siot axis,

plane wave,

2- a uniform tranverse magnetic (to the slot axis)

plane wave.

* Specifically, the characteristic currents and field modes

are computed for different slots. These are then used to

compute the quantities and parameters of importance

usually encountered in electromagnetic field compatibility

problems, such as the equivalent magnetic current of the

slot, the transmission coefficient, and transmitted field

* pattern far from the slot. Analytic expressions for the

*special case of the narrow slot are also given. It is
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shown that the theory of characteristic modes is a very

useful theoretical tool. It allows for a modal expansion

of all quantities of interest, and can be applied to

narrow slots as well as to general slots of arbitrary

width. Furthermore, it is shown that it is

computationally very efficient. It exhibits features and

speed of convergence that make it more attractive than

many other numerical solutions.

The theory of characteristic modes is applied in the

report only to a slot in a conducting plane in an

unbounded medium. Such a restriction is not essential,

and is intended only to simplify the theory. The

extension to the two-medium problem is straightforward,

and can be accomplished with a few obvious changes in the

present analysis. The conclusions drawn here for the one-

medium problem are expected to hold for the two-medium

problem. Finally, a word about the organization of the

*report is in order. In Chapter 2, the theory of

characteristic modes for a slot in a conducting plane in

an unbounded medium is presented. In Chapters 3 and 4,

*the theory of characteristic modes is applied to

transverse electric and magnetic plane wave excitations of

the slot, respectively. In Chapter 5, conclusions are

* drawn and some final remarks are given.
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CHAPTER 2

THE CHARACTERISTIC MODES FOR A SLOT
IN A CONDUCTING PLANE

The characteristic currents and fields for a slot in a

conducting plane in an unbounded medium are defined in this

chapter. The characteristic currents are the solutions of

an eigenvalue equation relating the tangential components of

the magnetic field at the slot. The characteristic fields

are the fields produced by the characteristic currents on

the slot in the presence of the complete screen. These

currents and field modes are then used for the solution of

the slot problem. A Galerkin solution of the ei-genvalue

equation is given at the end of the chapter.

2-I Derivation of the Operator Equation

Let the excitation of the slot be a field (EA, HL)

incident from the left of the screen (z<O). This field is

called the incident field. It is the field that would exist

if the conducting screen were absent. Because of the

presence of the screen with the slot, part of the incident

field is reflected back, while the rest is transmitted into

the z>O half-space. The total field, incident plus

scattered, (E, H), must have zero electric field component

tangent to the screen, and continuous tangential electric

and magnetic fields across the slot. Below, a field
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equivalence theorem is used to divide the problem into two

decoupled parts.

Let the exciting field be incident while the slot is

covered by a perfect conductor. This field, often referred

to as the short-circuit field, is denoted (Em-, H--). By

the field equivalence theorem [9, Section 3-53, the field to

the left of the screen is identical with (E--, H-) plus the

field (E(M), H(M)) produced by the magnetic current sheet

* M u xE (2-1)

on the slot while it is covered by a perfect conductor. The

field to the right of the screen is then identical with the

field (E(-M), H(-M)) produced by the magnetic current sheet

-M on the slot while it is covered by a perfect conductor.

Figure 2-1 shows the equivalent situations.

The total tangential electric field clearly vanishes at

the conducting screen. Furthermore, the tangential electric

field is continuous across the slot by virtue of placing

magnetic current sheets of opposite signs on the opposite

sides of the slot. The continuity of the magnetic field

across the slot, however, requires that

H,1(M) + Ht
- - = H(-M) = - H(M). (2-2)

In (2-2), the subscript t refers to the tangential

component, and the last equality follows because of the

0
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linearity of the magnetic field. Rearranging, (2-2) then

becomes

-2 Ht (M) = _ (2-3)

In the next section, the characteristic currents of the

slot are defined. These currents are then utilized to solve

(2-3) for M.

2-2 The Characteristic Currents of the Slot

The operator equation (2-3) can be rewritten in the

form

Y(M) = I (2-4)

where

Y(M) = -2 H.(M)

(2-5)

I = H_ K

Since M and I have, respectively, the dimensions Volt/meter

(V/m) and Ampbre/meter (A/m), Y is an operator with the

dimension of an admittance.

Define G = (Y + Y )/2 and B = (Y - Y )/(2j), then

Y.(M) = a (M) + jB(M). (2-6)

In (2-6), G. is a conductance operator and B is a susceptance

operator. Following Harrington and Mautz 2], the
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characteristic currents of the slot are defined to be the

eigenfunctions M., of the eigenvalue equation

Y(M") = y, g(M.,) (2-7)

so normalized that

<M.", 6(M.)> = 1. (2-8)

In (2-8), <-, -> denotes the inner product

-w

<

where C (x) is the complex conjugate of C(x) and +w are the

x coordinates of the edges of the slot. Put

y.= 1 + ib.. (2-10)

Then, using (2-6) and (2-10), (2-7) becomes

B(M.) = bn G(M.,). (2-11)

The operators 6 and B are self-adjoint, since for any

M' and M

< M, 6(_M)> = <M1, S(y + Y )(=)>

,
- <((Y + Y )(MI) , Ma>

= <.(M1 ), M > (2-12)

* d~-
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and similarly for B. Furthermore, 6is positive definite,

since the time-average power (per unit length in the y

direction) radiated into the z>O half-space

L i Re E x H 1  .= dx

+w

=k! Re~ M . ~dx]

= 1 Re < Y > (M

It < <6(M), t!> (-

is always positive. The second and the last equalities in

(2-13) follow from (2-1) and (2-12) respectively. It is

then a standard practice (18, Section 1-253 to prove that

all bm., and hence q.,, are real, and that t. can be chosen to

satisfy the orthogonality relationships

1. M (Mm t)> =sm

2. < M., B(Mm) > = bm Smii (2-14)

3. < Mm, Y(Mm) > = (1I + j bm.) Sm..,

where S., is the Kronecker delta function (0 if m#n, and 1

if mn).



1-3

All the currents on a slot in a conducting plane in an

unbounded medium are required to radiate some power however

small. As can be seen from (2-11) and (2-13), the

characteristic currents corresponding to very large b,, are

basically non-radiating. It is shown in later chapters

that, when the slot is very narrow, all the characteristic

currents have very large eigenvalues (b.}) and, therefore,

are essentially non-radiating. In any cate, all currents

are required to exhibit the edge property (M. = O x )

and M. = O(1/rw - xZ), as x+4-w) E19, Section 1-43.

* 2-3 Modal Solution of the Oqerator Equation

A modal solution of (2-4) for the magnetic current M

over the slot is obtained in this section. Put

M= Z V" P, (2-15)

n

where . are the characteristic currents of the slot, and

Vn are complex coefficients to be determined. Substituting

(2-15) into (2-4), it then becomes

E V. Y(M,) = 1. (2-16)
n

Taking the inner product of (2-16) with each M., there
0

results
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E V., ..M..,. Y(M..L > M, ~ (2-17)
n

Because of the third orthogonality relationship of (2-14),

only the mth term in the summation survives. Thus

N ~VM <MM,, Y(Mm)> = M., !>.(1)

Hence

< Mm, 1),
V.. (2-19)

1 +jb,

Substituting (2-19) into (2-15), it becomes

* <!I.,9 I>
M=E M,.(2-20)

.n 1+b.,

The magnetic current M given by (2-20) is called the

modal solution of (2-4).

24 Power Consideration

The total complex power entering the slot is basically

+w

* Using (2-1), (2-4), and (2-5), (2-21) becomes

= (<I, M> - <Y(M), I!>)
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= 4 <Y.(M), !>. (2-22)

Furthermore, using (2-20), (2-22) becomes

P = -[ l<I, M.>I = . (2-23)
n I + bn =

Since the time-average power (2-13) radiated into the z>O

half-space is equal to the time-average power entering the

slot, s<G(M), M> is equal to the real part of the right-hand

side of (2-23).

A parameter sometimes used to express the transmission

characteristics of the slot is the transmission coefficient

T. By definition, the transmission coefficient of the slot

is the ratio of the time-average power transmitted through

the slot to that incident on the slot [9, Section 7-123.

Using (2-23), T is readily found as

1 1
T = - E 1<1, Mi,>IZ (2-24)

4P n 1 + bm2

where P is the time-average power incident on the slot.

2-5 The Characteristic Fields of the Slot

The fields (E.,t ) produced by the characteristic

currents , are called the characteristic fields of the
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slot. Orthogonality relationships for the characteristic

fields over the radiation cylinder can be obtained from

those for the characteristic currents by means of the

complex Poynting theorem [9, Section 1-10]. These

relationships are dual to those for the characteristic

fields of the conducting body, and can be derived in a

similar manner [20]. Thus

T11. Em. Ef dr =.

2. THm . H( d &,. (2-25)

3. W (PHm . Hm - Em . E,) dv =-bm S.,m

V

in duality with the orthogonality relationships for the

conducting body. In (2-25), q is the wave impedance of the

medium, C,- is the radiation cylinder, and the integration

in (2-25.3) is over the whole space. Figure 2-2 shows the

integration domain for (2-25).

I' The third orthogonality relationship of (2-25) states

* that the difference between the magnetic and electric energy

stored in any characteristic field is -b.I,2) Joules for

every one Watt of radiated power. The characteristic fields
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corresponding to positive (negative) b have predominantly

stored electric (magnetic) energy, and are therefore

referred to as the capacitive (inductive) modes of the slot.

The characteristic fields corresponding to b=O are then

called the resonant modes of the slot.

A modal expansion of the field radiated by M in terms

of the characteristic fields E. and H., can be readily

obtained using the modal expansion (2-15) of M:

E(M) = E V., E(M,) = Z V., E,
n n (2-26)

H(M) = E V. H(M,) = Z v. H..,

n n

In Appendix A, it is shown that the field (E(M). !I(M)) given

by (2-26) converges in a least-squares sense on the

radiation cylinder.

2-6 Solution of the Eiaenvalue Equation

An exact solution of the eigenvalue equation (2-11) for

the characteristic currents is rather difficult, if at all

possible. An approximate solution has then to be sought.

Put

Pe
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N
S= U S. (2-27)

k 1

L
M. E U.,.,f* (2-28)

k=1

In (2-27), Sk. are non-overlapping intervals such that

N
2w = Z ISO' (2-29)

k1l

where #Ski is the length of the kth interval (see Figure 2-

3). In (2-28), each fk. is a real function that is defined

on a part of the partition and vanishes on the remainder of

it, and U,... are real coefficients to be determined.

Substituting (2-28) into (2-11), it becomes

L _ _L_ __

X U.,., B (f u) = bm. E: U,.,. G(f k) + R (2-30)
k=1 k=1

where R is a residual term.

* A Galerkin solution Ell, Section 1-33 of (2-11) can be

obtained by requiring that R be orthogonal to all fk., viZ.1

af, > = 0 1 1,2,. .L. (2-31)

Thus, taking the inner product of (2-30) with each fj. and

enforcing the Galerkin condition (2-31), there then results

0%
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L L

E U,., <f 1 , B(f.)> =- b,. E Uk <fzf, G(fk):>

k=1 k=1

1=1,2, .. . ,L. (2-32)

In matrix form, (2-32) becomes

= 4 =-+
B U., = b., G U.,2-3

where 6 and B are the L by L matrices

G [61k] = E<fl, G(ffk) > ]

(2-34)

" . B = [Blk] = [<fz, B(f5)>]

and U,. is the L by 1 vector

4
U [,] = U,.ft. (2-35)

The constraint equation (2-8) now becomes

• -4 T = -4
U., 6 U., = 1 (2-36)

where the superscript T denotes 'ector transpose.

The solution of (2-33) determines in a Galerkin sense

the first L characteristic currents of the slot.

9.%
0

i" -"r9. . ' . i lli ' ' "i °
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CHAPTER 3

TRANSVERSE ELECTRIC (TE) CASE

In this chapter, the characteristic currents and

magnetic -ields, the equivalent magnetic current, and the

radiation pattern are computed for a general slot of

arbitrary width in a conducting plane when it is

illuminated by a uniform transverse electric (to the slot

axis) plane wave. Analytic expressions for the narrow slot

* are also given.

3-1 Basic Formulation

Let a plane wave be incident on the slot at an angle 0

from the left of the screen (see Figure 3-1). This wave is

assumed uniform and transverse electric to the y-axis, and

therefore has the field distribution

-jk(x sine + z cose)SEl = rjEcose u. - sine u. e

(3-1)

-jk(x sine + z cose)
H1 = e uV -

0

Since the slot is uniform along the y-axis, and since

the incident magnetic field has only an H. component that

does not vary with y, so does the scattered magnetic field.
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Figure 3-1. An infinitely long slot in a conducting plane
illuminated by a uniform TE to the slot plane
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Consequently, the total field is independent of y and

transverse electric to the y-axis. It then follows from

(2-1) that M has only a y-component that does not vary with

y:

=M =(x) uIV. (3-2)

The field to the left of the screen is thus given by

[9, Section 3-12]

E(M) =- V x F(M)

(3-3)
k

H(M1) =-j- F(M1)

plus the short-circuit field

= -2n[jcose sin(kz cose) u. +

-jkx sine
sine cos(kz cose) u.] e

* (3-4)

* -jkx sine
H = 2 cos(kz cose) e uV-

In (3-3), F(M,) is the electric vector potential produced by

M in the presence of the complete screen, viz.) [9, Section

5-71:

@_1r (2)

F(M) = H o(x') !"10 (kJz5 + (x-x')0) dx' u, (3-5)

- -. - -- w
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(2)
where HO is the Hankel function of the second kind and

zero order. The field to the right of the screen is then

the negative of that in (3-3).

Substituting (3-3), (3-4), and (3-5) into (2-5), Y(M)

and I are readily found as

Y(M) - HO (kix-x'I) dx' u.

-w

0(3-6)

-jkx sine
.I. 2e u.

Since [9, Appendix D3

(2)
H< (s) = J o(s) - jNo(s) (3-7)

where Jo and N0 are the Bessel functions of the first kind

and zero order, and of the second kind and zero order,

- respectively, the operators G(M) and B(M) in (2-6) are

given by

0i

"S

,0¢

'!'~

i ..
_S.. •
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ik I i I i

4 I "
6111 = - M (x'1 Jo(klx-x' I dx'

ml -w

(3-8)

kr
B(M) =-- M(x') No(klx-x'l) dx".

n
-W

In the next section, the eigenvalue equation (2-11) is

solved for the special case of the narrow slot. The

numerical solution of (2-11) for the general slot is then

considered.

3-2 The Narrow Slot

An important case that requires special consideration

is that of the narrow slot (2kw<<l).

* Since

klx-x'I _ 2kw << 1 (3-9)

* the Bessel functions Jo and No can be replaced by their

small argument approximations t9, Appendix DJ:

AA.

j w =.
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Jo(klx-x'I) z I - -(x-x')
4

(3-10)

2 ry'k
No(kix-x'I) z - logI- lx-x' I

W L2

where "log" denotes the natural logarithm andY=1.7810724.

G(M) and B(M) are then given by

+w ZE cr k
G(M) z- M(x')[1 - (x-x')2 dx'

4"4

2k. j Y k
B(M) z- - Mlx) log %klx-x'] dx'.

-w

Furthermore, I does not vary appreciably over S, and can

therefore be approximated by the first two terms of its

Taylor expansion about x=O. That is,

I z 2 - 2jkx sinO xES (3-12)

or, on using (3-4),

k
I z Hv '=(O) + j- E.'=(O) x xES (3-13)

n

where (0) .is written for the point (x,z)=(O,O).
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The characteristic currents of the narrow slot can be

determined by solving (2-33) with G(M) and B(M) given by

(3-11). Since the slot is narrow, however, partitioning of

it is not necessary. The lkth elements Of 6 and B then

become

Gl j JF f(x) dxJ fsk(x') [I k ]-, dx'

-W -W

2k jy
BIa~ 6. -- f:1 (x) dx jfo.(x') lg I-- dx'.

'Tn2

An appropriate choice of fk that satisfies the edge

requirements on M.,, and is compatible with (3-13), is

xk-I
f.k(x) = k=1,2. (3-15)

Substituting (3-15) into (3-14), and using the identities

*A,

1a
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I ___dx =0 (3-16)

n >0

xW w (2n)
dx -

______x_ 2=01 (n!)O

and E10, Appendix]

+W wlog(Ykw/4) if n=0

0 [r~T.,x'/w) Yk i~Ix-x'I] dx' 3-7

-. -Id - -T..dx/w) if n>0
Ln

where T..dx) is the Chebyshev polynomial of the first kind

and nth order, (2-33) then becomes

1 (kw/2)0

0Cwa/2) (kw/2) 2  (3-1n)

n=1,2
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By inspection, then,

1 2 2
b, - - log(ykw/4) z -- log('Ykw/4)

wr 1 - (kw/2)z if

(3-19)

C

and

(3-20)

Dx
MM =

are the solution-pairs +or (3-18). In (3-19) and (3-20), C

and D are constants to be determined according to (2-36).

Hence

I/k 1
= - (3-21)

212 T/ k x
MM (3-22)

wfkwO X5
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Furthermore, it readily follows from (3-19) and (3-20) that

the characteristic values of the narrow slot are very large

positive numbers whose ratio satisfies

b- 4 -4 4
S="--(3-23)

b1  (kw)z log(ykw/4) [(kw)log(ykw/4)](kw) kw

The equivalent magnetic current M of the narrow slot

is now given by

<M., I> <MM, I>
M= M 1+ MM,

1 + jb1  1 + ibm

<M., I> <Mz, I>
-Mi - j- MM

1 + jb b=

1- 0 (0) x
[ 

I. + E

2 v+log(kw/4) +jw/2 x=

(3-24)

In (3-24), v = log(y) is Euler's constant. Higher order

solutions can be obtained by retaining more terms in the

small argument approximations of Bessel functions in (3-10)

and using more expansion functions. Incidentally, the

magnetic current (3-24) is identical with the solution
I..

given in [10].
* .J.

0

I*..
0t



32

3-3 Evaluation of the Matrices G and P.B

The solution of the eigenvalue equation (2-11) for an

arbitrary slot can be effected by transforming the integral

eigenvalue equation into an algebraic one as is seen in

Section 2-6. However, the evaluation of the matrices G and

B constitutes a large portion of the work involved in the

solution. An efficient evaluation of these matrices is

therefore necessary for the success of the solution.

The lkth elements of G and B are given by

'! +Iw +W

mk f (x) dx fk(x') Jc(kIx-x'I) dx'
k-w -w

(3-25)

+w +w

17 k = - fx(x) dx fk(X') No(klx-x 'I) dx'

k-w -w

where the real functions fk are so far unspecified. A

particularly simple choice for fk is

1 on Sk

f= (3-26)

0 on S , lk
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which is a pulse expansion function (see Figure 3-2).

Using (3-26), the lkth elements of 6 and B become

"X Xk

] , dx Jo(kix-x'I ) dx'
k J J'

XIL- 1  XS'-

(3-27)

Xl

- B dx No(klx-x I) dx.k

SXI- Xk-SI

Put

xl

GIk(x) = J J(klx-x' I) dx'

xES 1  (3-28)

=-
.4 . Xsk

Xk

B1,(x) = - Nc(klx-x'i) dx'

~Xk-1

Then, by the first mean value theorem for integration £21,

Section 7-18], there exist points x3 0 and x.ES1 such that

~GI k ,,. I SL I GIL k. (X.O)
" k

k "(3-29)

- B%. = IS, I B& k (XN1).
k
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WXN -

* IfN

Xk

(k-i 
1- ]

Figure 3-2. The pulse expansion functions for the

characteristic currents.

0Z

Aw.izS
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v..

The evaluation of Glk and Blk is completed by integrating

the Bessel functions Jo and No over S, and, for that

purpose, any quadrature rule can be used. Thus

- Ga.k = - IS, IISk I £ q& Jo kI xao - Xt k|

k 2 i=1

(3-30)

- - - IS1 I ISk 1. qI No kIxNo - Xl |

k 2 i=1

In (3-30), Q is the order of the rule, qL are its

coefficients, and its abscissas are given by

, "I S., I

; i k 
= Xk-,,= + P& C 3--31):;t 2

where xk-,= is the midpoint of Sk.

When evaluating the diagonal elements of B (l=k), No

offers a logarithmic singularity at x=x' that requires

particular attention. Put

No'(klx-x'I) = (No - No.) (klx-x'I) (3-32)

0

Al where No. is the singular part of No given by its small

argument approximation (3-10). Then

_
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Bl1  dx 0.+ NQ0 ,)(kIx-x'I) dx'

XlI- XI-i

-- SI [2si~f logfjyk' S2I - 3]I

-Jdx No.,,(k Ix-x' I) dx'.(-)

x1L-1  x1 -1

N,,, has no singularity at x=x', and can therefore be

4 integrated by the first mean value theorem and quadratures.

Thus

k 2r

- Sx12 E q, hN, [klxmo -x133

2 i=l 1i

for some xIIO,ESj.

*Actually, finding such points xao, xmo, and xmb is at

least as difficult as computing the integrals themselves.

For sufficiently small IS&I, however, the midpoint of S1

*can replace these points while introducing negligible

error. Thus, dividing by the factor ISO1,
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Gz S.IE q, Jo (u, Lk) for all l,k
k IS,1  2 i=1

1 Q
-- IS4 I r q. N.0(U, I ) if l~k
2 i=1

k I Sit I

Is IS1  -[2)log jwk-.j -3j +

- E qND( k if l=k
2 i=1j

* where

=lI klx 1 - 1 2 - xO'I. (-

The matrices G and B so obtained are the same as those

* resulting from enforcing the paint matching condition

Rx-:= = 0 1-1,2....9N (3-37)

i in (2-30), rather than the Galerkin condition (2-31),

* except for a slight alteration in Bil, as can easily be

establ ished.
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3-4 Numerical Results

The characteristic currents and magnetic fields as

well as the equivalent magnetic current and radiation

pattern have been computed for different slot widths. The

computational aspects of the solution, and some of the

results obtained for slots of width 0.4X I 0.5X , and 1.uA

where A is the wavelength are discussed in this section.

In the actual computation, polynomial approximations

of the Bessel functions J0 and N0 [22, Articles 9.4.1-

9.4.3] are utilized, while all the integrals are computed

using an eight-point Gaussian quadrature [22, Table 25.43.

In evaluating the far fields, the Hankel function is first

replaced by its large argument approximation [9, Appendix

D]:

(2) -is
H. (s) = 42j/(sw) e . (3-36)

Then, using the typical radiation zone approximations £9,

Section 2-10],

s = k-z2 + (x-x') 2  = k(r - x'cos0)

(3-39)

1/s = 1/kr

for all points (x,z)EC.,, r>>2w, where 0 is the angle

r=xu.+zq, makes with the X-axis, the electric vector

kI
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potential produced by the characteristic current M.., at any

point (r,0)EC,, is readily found as

Xk

_+1 -jkr N [ jkx'cosO
F (M,) e E U.,k e dx' uV

12-jwkr k=1 I

N... kxk..1 cs
xk-±

N jkXk-,'= COSOf

= _ A(kr) X U1,k ISkl e
k=1

sin( (kiSklcos0)/2)
u~, ( 3-40 )

(k I Sk Icos0)/2

where
-j kr

e
A(kr) 2

and where the upper sign is used for z<O and the lower one

for z>0. The far characteristic fields then follow by

substituting (3-40) into (3-3).

* An IMSL Library 2 subroutine "EIGZF" [23] is used to
,.

solve the matrix eigenvalue equation (2-33) for the

characteristic values and currents. In all the computer

* runs, a "performance index" has consistently been less than

:* one, indicating that the subroutine has performed well.

The convergence patterns for the characteristic values for

* the 0.4 X , 0.5 X , and 1.0 X slots are shown in Tables 3-

1, 3-2, and 3-3, respectively. As can be seen, the

S
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Table 3-1

The convergence of the characteristic values for the 0.4N
slot.

N b b b b b
1 2 3 4 5

P.- 3
4 0.386499 2.541965 52.985104 7.204746x10 * *

3 5
8 0.382960 2.381441 39.523594 2.778433x10 4.624070x10 a

3 5
12 0.381978 2.340359 37.074282 2.372682x10 3.329886x10 a

3 5
16 0.381576 2.322112 36.091969 2.232416x10 2.945282xi0 a

3 5
20 0.381381 2.311973 35.573169 2.163472x10 2.775236x10 0

3 5
-- 24 0.381277 2.305593 35.256428 2.123233x10 2.700021x10 a

*_
V
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Table 3-2

The convergence of the characteristic values for the 0.5A
sl ot.

N b b b b b
1 2 3 4 5

3
4 0.248621 1.722857 22.177586 1.848905x10 * *

3 5
8 0.251433 1.615827 16.842234 0.726753x10 0.767466x10 o

3 5
12 0.252425 1.588517 15.861717 0.622888x10 0.554707x10 a

3 5
16 0.252971 1.576381 15.466336 0.586800x10 0.494704x10 a

3 ~ 5
20 0.253329 1.569636 15.256797 0.569042x10 0.466199x10 a

3 5
- 24 0.253587 1.565691 15.128519 0.558653x10 0.450576x10 a

-- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -
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convergence is always monotone, either upward, or downward.

For the 1.0 A slot, ba first decreases monotonically and

then increases, but this can be attributed to rounding

errors. Also, the convergence of the lower order

characteristic values is generally faster than that of the

higher order ones.

Any calculated value of b. is probably inaccurate

whenever Ib./b 1 l >1010 where NS is the number of

significant figures retained during the calculation.

Whenever b, was large enough to be unreliable, it was

arbitrarily set equal to w. Now, the contribution of these

currents is extremely small, and therefore has not been

considered in subsequent computations. It appears that for

a slot in a conducting plane in an unbounded medium, only a

finite number of characteristic currents need to be

computed. This is also expected to carry over to slots in

a conducting plane separating contrasting mediums.

The computed characteristic currents normalized to a

maximum amplitude of unity and their radiation patterns for

the slots considered are shown in Figures 3-3, 3-5, 3-7, 3-
0

9, 3-11 and 3-13. Figures 3-5, 3-9, and 3-13 are polar

plots. The normalization to a maximum amplitude of unity

is used only for plotting convenience. The equivalent

magnetic currents and radiation patterns for the slots are

O
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shown in Figures 3-4, 3-6, 3-8, 3-10, 3-12, and 3-14.

4 Figures 3-6, 3-10, and 3-14 are polar plots. All currents

clearly exhibit the right behavior at the edges. It is

interesting to note that the number of lobes in each

pattern is equal to the order of the characteristic current

or field. When a slot is excited by the plane wave (3-1)

with 9=0o0. the equivalent magnetic current M~ is given by

(2-15). The power radiated by the magnetic current W,M. is

called P,.~ For various values of n, the ratio P.,/P& is

6given in Table 3-4. This ratio was evaluated with N as

specified in the arrow marked rows in Tables 3-1, 3-2, and

3-3. The entries in-Table 3-4 suggest that the radiation

pattern for the slot is basically the same as that for its

dominant characteristic current. This is indeed the case,

as is readily established by comparing the corresponding

figures.
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Table 3-4

The ratio of the power radiated by each characteristic
current to that radiated by the dominant characteristic
current for a (a) 0.4A slot, (b) 0.5,\.slot, and (c)1.
slot.

(a)

n P/ P
n 1

1 1.0

0.159567

-3
-3 5.170679xl0

-5

4 6.807077xl0

4.. -7

5 5.374193x10

... 0.0

(b)

n P/ P
n I

1 1.0

2 0.267814

4 2. 366575x 10

5 2.919489x10

- 0.0

--0- - - - -- - - - - -
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(C)

n p /P
n 1

1 1.0

2 0.149602

3 0.039083

4 3.766960xl0

-4
5 1.726436xl0

* -6
6 5.240201x10

-7
7 1.126339x10

... 0.0

-- - - - - - -- - - - - -
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CHAPTER 4

TRANSVERSE MAGNETIC (TM) CASE

The case of a uniform transverse magnetic (to the slot

axis) plane wave excitation of the slot is considered in

this chapter. The characteristic currents and electric

fields as well as the equivalent magnetic current and

radiation pattern are determined for different slots.

Analytic expressions for the narrow slot are also given.

4-1 Bas.i c Formulation

Let a plane wave be incident on the slot at an angle 8

from the left of the screen (see Figure 4-1). This wave is

assumed uniform and transverse magnetic to the y-axis, and

therefore has the field distribution

-jk(x sine + z cose)
E= e

(4-1)

" 1 - [i-jk(x sine + z cose)
X . H.*=- ose u. - sine U_= e

Since the slot is uniform along the y-axis, and since

the incident electric field has only an Ev component that

* does not vary with y, so does the scattered electric field.

Consequently, the total field is independent of y and

4%

0Y

* e-*
_ - " " ' . J . . , " ' " " ,",,, : " - , . " .'. ", .. , •' *h,,.,",. ,, •- '.
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. Perfectly
Conducting

V.. fz

yy

Figure 4-1. An infinitely long slot in a conducting plane
e. illuminated by a uniform TM to the slot

plane wave.

0.

r M 5
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transverse magnetic to the y-axis. It then follows from

(2-1) that M has only an x-component that does not vary

- with y:

M = M(x) u . (4-2)

The field to the left of the screen is thus given by

[9, Section 3-12]

E(M) = - x , F(M)

0 (4-3)

H(M) = - E7(V . F(M)) + k 2 F.(M) I
rlk

plus the short circuit field

-jkx sine
= - _2 sin(kz cosE) e U..

(4-4)

cos 2
H- = = os cos (kz cosO) u. +

j sine sin(kz coso)u.| 
e sine

In (4-3), F(M) is the electric vector potential produced by

SMin the presence of the complete screen, viz. £9, Section

5-73:

• 1 r (2)
F(M) = -j M(x') H (kfz2 + (x-x')O) dx' u.. (4-5)

S2i-w

N _

x- - - --, m m m m m k; , "l'ml ' t : L 
"

" L ' " " • : " : l a ,,
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The field to the right of the screen is then the negative

of that in (4-3).

Substituting (4-3), (4-4), and (4-5) into (2-5), Y(M)

and I are readily found as

+!w

1 da (2)

Y (M) = - (- + k -z) M (V') H (kix-x'I) dx'
krI dxz J

(4-6)

2 -jkx sin-
*1= -- cosO e

- where, as before, scalar quantities are used since Y(M) and

I- are both directed along the x-axis. Furthermore, using

(3-7), the operators G(M) and B(M) are now given by

.%:'+w

- 1 d=

A G(M) = - (- + km) M(x') Jo(klx-x'i) dx'
kfl dxa

* j -w

(4-7)

1 dz
B(M) - (- + k=) Mx') No(klx-x'I) dx'.

17 kyl dxa -

Below, the narrow slot is treated first, and is then

followed by the general case of an arbitrary slot.

4,



4-2 The..Na rrow-...Slot.

Approximations similar to those utilized in the TE

case can be used to simplify the analysis of a narrow slot

excited by a uniform transverse magnetic plane wave.

Specifically, the Bessel functions Jo and No are replaced

by their small argument approximations (3-10).

Furthermore, for a narrow slot, I does not vary greatly

over the slot, and can therefore be approximated by the

first two terms of its Taylor expansion about the origin,

viz..,

. ., I H"D (O) +- x H " = "(0)

1 *1

[ [cose jkx sin(20)J. (4-8)

In (4-8), the prime denotes differentiation with respect to

x, and (0) is written for the point (xy)=(OO).

1The characteristic currents are determined by solving

the matrix eigenvalue equation (2-33). Since the slot is

narrow, however, partitioning of it is not necessary. The

lkth elements of 6 and B then become

.1
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+w

31k - f2 (x) dx

-+

d ~)I f0' [jk
- + k=) f - Ix-x'I dx'
dx =  4 J

-w

(4-9)

B* = J (x) dx
wk TI

do Yk ,

(- + k) "Fk(x') log I x-x'I dx'

dx =  L2 J
-w

An appropriate choice of f that satisfies the edge

requirements indicated in Section 2-2, and is compatible

with (4-8), is

-f.k(x) = Xk-1 4wa - xz k=1,2 (4-10)

which results in a second order matrix eigenvalue equation.

_ Substituting (4-10) into (4-9), and using the identities
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f4-w--x2dx wz~r/2

+w

if z2r-2 4w5 xO dx =0 (-1

n>0

0 +w

and £10, AppendixJ

I' _______ 1 Yk 1F w ykw,
4,5- x51og Ix-xII dx' - log -

+w
k

U.,~~~Wi Wa /w -z-x IogI--lId

[n~~ -I (x(w /w Ur1x/)1 ,( /) n>

n(4-12)

if UIx/w) wa xa og~ix-xi] j'
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where T. and UJ,, are, respectively, the Chebyshev

polynomials of the first and second kinds, (2-33) then

becomes

w 2-(kw/2)0 + (w2lg1 0 j

[2 L42

2 0 No[I - (kw/)2] M

(kw/2)21 1 (kw/2)a] 0 ~ [.i

2 0 ~(w/2)--(kw/2), .

By inspection

b1 = 1 (w2z 2 -(kw/2)z + (kw)zloQ[ T1
ir~kw/2)2 E1 -

(4-14)

M, (X) =C -I~7

and

bm___ [I (kw/2)z]

w (kw/2) 4

(4-15)

M=~(x) =Dx IwZa -z



E7 
69

are the solution-pairs of (4-13). As can be seen, b, and

ba are very large negative numbers. Furthermore, since

2kw«1l, the characteristic values are well approximated by

4 Y Ykw

b - j2 +~w) [101o I

(4-16)

64

Tr (kw)

Consequently, to this approximation, the characteristic

currents are given by

' 24-nMIL(x) =- -w2

kw~ir

(4-17)

8 12;
P12(x) =- x .W

k aw~ir

when normalized according to (2-36).

The equivalent magnetic current on the slot is given

by

<MI, I> <MM, I>
M(x) = M, + - M

*1 + jb1  1 + jba

0A
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<M", I> <Mm, 1>.

1 + jbj bm

1kr H-- (0)
Z T)k (kw/2) - j(2 + (kw) 0log(ykw/4))

j -
- Ho- " (0) x !W " -X". (4-18)
4

The magnetic current (4-16) reduces to that in [10] when

all terms containing kw factors are ignored. Higher order

solutions can be obtained by retaining more terms in (3-10)

and using more expansion functions.

4-3 Evaluation of the Matrices 6 and B

The general slot of arbitrary width can be solved

using the Galerkin procedure of Section 2-6. Similar to

the TE case, an efficient evaluation of the matrices G and

B is essential for the success of the solution.

Because of the form of the operators G and B. a

triangular expansion of the characteristic currents (see

Figure 4-2) is attempted. This has the advantage of

reducing the second order partial derivatives to finite

differences [243, as well as approaching zero as x-.*±w,

although not at the rate specified by the edge conditions.

0
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W=X N

XW-I xN  fa

Sx 2 .

-W= X0

Figure 4-2. The triangular expansion functions for the

characteristic currents.

"r
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To keep the notation simple, a uniform partition of the

slot is assumed. Thus

X - Xk--i Xk-I- - X S Xk
1

{gg(X) = - (4-19)

S k-8-1 - X X k S X S Xk-*-I

where S is the uniform width of the partition. The lkth

elements of G and B are then given by

IL1 X IL-*-IfIL( )r d

V knG z = (x (- + ka)Gk(X) dx
* dx1

J Lcix -

(4-20)

knBk = - fi(x) (- + ka)Bk(x) dx

dx 2  J

where

• Xk--

3k(X)= J fkW(x') Jo(klx-x'I) dx'

(4-21)

Bk(x) = J fk(x') No(klx-x'l) dx'

0X 'k-IL

S{Ic
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Integrating the first term in (4-20) by parts twice,

and approximating Gk(x) by Gk(XI) and Bk(x) by Bf(j in

the second term, Gaek and 81k then become

kflG7lk =-[6k.x..1. - 26.(X1 ) + 6.XI1

+ W2 Gk(XI) +x (x) dx

(4-22)

S 1

1 110.I

-k= Bk(XI) Jf3.(x) dx.
x2 .- 1

Since

+,()dx =S, (4-23)

the elements Gik and Bik of the matrices 6 and B become

=nII [ G.k(xi.) -2(1 -r)Gkq(xi) + G(R1

(4-24)

0kflBlk =kX-i - 2 - (1 - f)B.(xi) + B~11

0S
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where r=(kaSZ/2). The evaluation of Gk and Blk (il-k>2)

is then completed by performing the integrations in (4-21)

numerically to obtain Gk(X) and Bk(X) at x,- , x1 , and

x1 .*.., and, for that purpose, any quadrature rule can be

used.

When evaluating the diagonal and the first and second

lower and upper diagonal elements of B, BIk, l-kI-2,

singularities are encountered. As has been seen in the TE

case, this situation is best dealt with by integrating the

singular part of the integrand analytically. The non-

singular remainder is then integrated numerically using a

quadrature formula. Thus

P

Bk(xj) = Bk(xj) + Bk(Xj)

where

p
Bk(xJ) = fk(x') Nca."(kIxj-x'I) dx'

M Xk-1

and

*_ X k,* 4-

Bk(xj) = f.(x') No.(kIx.-x'I) dx' (4-25)

where No. is the small argument approximation of No given
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by (3-10), No= No-No, and jE{k-1, k, k+31-. The

integration in (4-25) is readily performed as

Xe1k

s 2 ry
Bs.(x-) - Xx W - ,)IoglIx.,-× I d×"

WS i=k1, J L2
k+1 x,

2 J - .
= (u (x.-x))log -u du

itS i=k-1, J(-2
k+1 x 1-xu

1 " I
E IX[J-X k i = log IX.-xk I -

vtS i=k-1, 2

k+1 L

- 2xj-xiIIxJ-x.' 1o09 IxJ -Xkl Ij

+ Ixj-x tl log -I x.-x I - (4-26)

In obtaining (4-26), advantage was taken of the non-

negative nature of (xJ-x)(X.-Xk) to replace it by its

absolute value. Since

xj = - w + iS (4-27)
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then

S S [ y k 1
Bk (X.2) E -jk1 [logLI~ - K-li

-21j-i I li-ki [lo iYk '1 - 1i

+ . [ii- o rY' k 311 I (4-2e)

When Ij-k 1=1, Bk(XJ3) Of (4-28) reduces to (1 and when j=k,

Bk (xj) reduces to am where

a= - [2lo[2YkSj 3]

.4 (4-29)

* The quantities (B,1(Xj), j=1-1, 1,1+1) appear on the

right-hand side of the second of equationS (4-24).
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Retaining (4-24) whenever lk >,~ and replacing B.4(x4 ) by

means of (4-25) and (4-29) whenever Ij-kIL<1, we obtain

=nl x N, 2 (1 - r) Sk (x]1 ) + 6mk UI -IJ

for all 1.k

j[BI(XX.1.) - 2(1 - f)Bk(XX) + Bk~(Xi...a)J

if I k-l I>2

- B.k(XI.1 -. 2(1 -r)Bft(x 1 L + Bmk(xx-,.) + a

if k-1=2

1 p -

V. -j~k(XI..i. - 2(1- r)Bk(X1 L + BkXLX + 131j

if 1-k=2

1 p p
- l.(X1..1) -2(1 - f)BkX3L) + Bk(X2.-I)

S LB

+ -2(1 - r~) a&if k-1=1

1 p p
S [Bk(X2..) -2(1 - f)Bk(XI) + k 3, I

+- am2 -(1 r) il-k1l

1 pp p
- B(xi..) -201 - r)Bk(.%]) + BOI-L

4+ 2a, 2(1 r ) Am2 if 1k.

(430

~~~ %u'-
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p
In (4-30), B, (x,). jE{k-l, k, k+1), is evaluated as

p Q
Bk (Xj) Z S Z c- f..(Xk+d,.S) Ncv(kixJ-(k+dS)g)

n=1
(4-31)

where Q is the order, C. are the coefficients, and d,, are

the abscissas of the quadrature rule.

4-4 Numerical Results
S

The characteristic currents and electric fields as

well as the equivalent magnetic current and radiation

pattern have been computed for different slot widths. Some

of the results obtained for the 0.4X, 0.5X, and 1.0 X slots

are given in this section.

In the actual computation, polynomial approximations

of the Bessel functions Jo and No [22. Articles 9.4.1-

9.4.3] are utilized, while all the integrals are computed

using an eight-point Gaussian quadrature [22, Table 25.4].

The characteristic electric fields E,, are given by

±r kz (2)
E = M,(x') H, (k1z2+(x-x')O ) dx'
j2 Jz=+ (x -x )2

-W
• (4-32)

.4-'4 ii.lill li llli/l. .
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(2)

where H, is the Hankel function of second kind and first

order. The upper sign is used for z<o and the lower one

for z>O. The far fields can then be obtained by replacing

the Hankel function by its large argument approximation [9,

Appendix D]:

(2) -is
H, (s) = j4J2j/(s) e (4-33)

and using the radiation zone approximations (3-39). Thus,

substituting (2-28) for M., with fk(x) given by (4-19), we

": .' obtain

+j rsin((kScosO)/2)1 2 -jkr
Z+ - Al -wr) sin0 Se

2 L (kScos0)/2 1

L jkXkcosO
E Ulk e
k=1

L jkxkcos0
= A(r,0) E UZ k e (4-34)

k=1

at any point (r,0)EC,, when r>>2w and kr>>l. In (4-34), 0

is the angle r=xu.+zun makes with the x-axis.p .,,., ..

All the features and convergence patterns found for

the TE case are repeated for the TM case. The convergence

of the characteristic values is monotone, either upward or

downward, as can readily be seen in Tables 4-1. 4-2, and 4-

W '.
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Table 4-1

The convergence of the characteristic values for the o.4A

L b b b b..
1 2 4

4 -0.9704768 -39.8842620 -3720. 14844 a

8 -0.9579801 -35.8596497 -2545.51025 -411088. 187 *

12 -0.9465772 -34.6101685 -2324.73218 -369193.812 a

16 -0.9390166 -33.9757080 -2227.90527 -269168.375 a

20 -0. 9338933 -33.5944824 -2185.04346 -265509.875 a

-*24 -0.9298853 -33. 3237762 -2155.04395 -237685.375 a

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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TablIe 4-2

The convergence of the characteristic values for the o.5
slot.

L b b b b
1 2 3 4

4 -0.4591318 -14.9436836 -897.567627 0 S

8 -0.4725091 -14.0017996 -648.799561 -62683.6680 a

12 -0.4709589 -13.6431913 -600.401367 -51791.5703 a

116 -0.4687450 -13.4430857 -579.949951 -49074. 1836 0

20 -0.4668146 -13.3114119 -567.934814 -47766.3203 0

24 -0. 4653491 -13. 2199717 -560. 609375 -48250. 5898 a

-~28 -0.4641726 -13.1521626 -555.927002 -49039.1602 0

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Table 4-3

The convergence of the characteristic values for the 1.0
slot.

L b b b b b
1 2 3 4 5

4 0.007760 -0.2222299 -6.3792248 -316.052002 *

8 -0.0100392 -0.4589630 -7.8628264 -187.909714 -8264.32031

12 -0.0139949 -0.5044749 -8.1955252 -179.558655 -6616.984337

16 -0.0157180 -0.5185139 -8.2802639 -176.418991 -6160.37109

20 -0.0167178 -0.5237506 -8.2951450 -174.405258 -5933.50781

24 -0.0173952 -0.5258325 -8.2879648 -172.971313 -5828.77734

28 -0.0178963 -0.5265995 -8.2730077 -171.782654 -5732.35547

32 -0.0182855 -0.5267935 -8.2571888 -170.876831. -5652.25781

36 -0.0185869 -0.5265971 -8.2394047 -170.050171 -5601.01953

-- 40 -0.0188513 -0.5263984 -8.2251053 -169.446167 -5562.56641

0.-

0

Jd
F 

p7 
1
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It should be noted, however, that only four

characteristic modes for the 0.4X and 0.5 Aslots and five

for the 1.0 X slot are computed compared, respectively, to

five and seven for the TE case. This is because the

corresponding programs were run on different computers

having different computing precisions. When the TE program

was run in the new computing environment, there resulted

the same number of significant modes. The characteristic

currents and far electric fields for the slots considered

are shown in Figures 4-3, 4-5, 4-7, 4-9, 4-11, and 4-13.

Figures 4-5, 4-9, and 4-13 are polar plots. The curve of

the characteristic current M.(x) in Figure 4-3 is not

exactly odd about x=O because of roundoff error. The

corresponding equivalent magnetic currents and radiation

patterns are shown in Figures 4-4, 4-6, 4-8, 4-10, 4-12,

and 4-14. Figures 4-6, 4-10, and 4-14 are polar plots.

When a slot is excited by the plane wave (4-1) with 0=00,

the equivalent magnetic current M is given by (2-15).

Table 4-4 gives for each slot the ratio of the power

radiated by each characteristic current VmM , in (2-15) to

that radiated by the dominant characteristic current VIM,.

All data are evaluated with L as specified in the arrow

marked rows in Tables 4-1, 4-2, and 4-3.
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Table 4-4

The ratio of the- power radiated by each characteristic
current to that radiated by the dominant characteristic
current for a (a) 0.4 X slot, (b) 0.5 X slot, and (c) 1.0
slot.

(a)

n P /P

n 1

1 1.0

2 0. 100758

3 0.251782xl0

-4
4 0.1633407x10

... 0.0

(b)

n P /P

n 1

1 1.0

2 0.161499

-.

*3 0.6648028x10

-4
4 0.7618671x10

*... 0.0

-- - - - - - -- - - - - -
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(C)

n p /P

1 1.0

2 0.062435

3 0.012813

4 0.105344x1O

-4
5 0.349562x10

... 0.0
-- -- - -- - -- -- - -- -
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CHAPTER 5

DISCUSSION

The theory of characteristic modes for slots has been

applied to the solution of the problem of an infinitely long

slot in a ground plane illuminated by either a transverse

electric or a transverse magnetic plane wave. The theory is

a specialization of the general theory of characteristic

modes for apertures, and can be applied to slots in a

conducting plane separating contrasting mediums and

illuminated by a general wave.

Some conclusions are drawn from the application of the

theory in the report.

1- The theory is equally applicable to narrow as well as

to general slots.

2- The theory results in a modal expansion for all

quantities and parameters of interest usually encountered in

electromagnetic compatibility problems, such as the

equivalent magnetic current on the slot, the transmission

coefficient, and the radiation pattern.

3- For narrow slots, the theory reduces to an augmented

Bethe theory, i.e., the slot is represented by a susceptance

term related to the polarizability, plus a conductance term.

I
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4- Only a finite number of characteristic currents and

field modes need to be computed for a slot of arbitrary

width.

5- When the slot is narrow, only a few terms are needed

in the modal expansion mentioned in 2 above.

Although the presentation is confined to a slot in a

conducting plane in an unbounded medium, the conclusions

drawn above are expected to hold for a slot in a conducting

plane separating mediums with different electromagnetic

properties. The extension to the two-medium problem can be

accomplished in a straightforward manner. The application of

the theory to another kind of aperture like the circular or

elliptic aperture, or for that matter a general aperture of

arbitrary shape, however, is a major task worthy of

consideration. The study of the transmission of

electromagnetic energy through apertures backed by resonant

cavities, or loaded by dielectric sheaths or strips is of

both theoretical and practical importance. Other areas of

possible study include phased array antennas, patternE, synthesis, and supergain array design.
The theory of characteristic modes for apertures is

versatile. It has been applied with great success to slots
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in a conducting plane in the report, and promises equal

success f or other aperture problems.

Ki IJMW 91
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Appendix A

In this Appendix, it is shown that the convergence of

the modal expansion of E(M.) is in a least squares sense over

the radiation cylinder. The proof for H(M) is similar. Let

(N) N
E (M) = EVIE. (A-1)

n=1

be the N-term modal expansion of E(M) and let EUI) be the

quantity toward which it converges.

N
E(M) = lim E V., Er (A-2)

N-s. n=1

if

U I. = im Vn. (A-3)

then

E (M.) E U., E.(A-4)
* n=1

The difference between (A-i) and (A-4) is called the

residual Rt"..

0 NI.R~ E Un En, E V.i, (A-5)
0n=1 n=1
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Then, the convergence of E(M) in a least squares sense over

the radiation cylinder is equivalent to the requirement that

the square of the norm of the residual

I IRNIA J R. R N dT (A-b)

be minimum. Substituting (A-5) into (A-6) and using the

first orthogonality relationship of (2-25), there results

1RNI I = E_ IU. - VI + X IU,.I .(A-7)
n=1 n=N+1

The quantity (A-7) is minimum when

VI = U. , n=l,2,...,N (A-8)

As given by (2-19), V., does not depend on N. It is now

evident from (A-3) that V.. is given by (A-B). Therefore the

modal coefficients V. minimize (A-7) so that the convergence

of the modal expansion of E(M) is in a least squares sense

over the radiation cylinder.

x
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